TSP: Learning Task-Specific Pivots for Unsupervised Domain Adaptation
نویسندگان
چکیده
Unsupervised Domain Adaptation (UDA) considers the problem of adapting a classifier trained using labelled training instances from a source domain to a different target domain, without having access to any labelled training instances from the target domain. Projection-based methods, where the source and target domain instances are first projected onto a common feature space on which a classifier can be trained and applied have produced state-of-the-art results for UDA. However, a critical pre-processing step required by these methods is the selection of a set of common features (aka. pivots), this is typically done using heuristic approaches,applied prior to performing domain adaptation. In contrast to the one of heuristics, we propose a method for learning Task-Specific Pivots (TSPs) in a systematic manner by considering both the labelled and unlabelled data available from both domains. We evaluate TSPs against pivots selected using alternatives in two cross-domain sentiment classification applications. Our experimental results show that the proposed TSPs significantly outperform previously proposed selection strategies in both tasks. Moreover, when applied in a cross-domain sentiment classification task, TSP captures many sentiment-bearing pivots.
منابع مشابه
Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning
Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...
متن کاملUnsupervised Cross-Domain Word Representation Learning
Meaning of a word varies from one domain to another. Despite this important domain dependence in word semantics, existing word representation learning methods are bound to a single domain. Given a pair of source-target domains, we propose an unsupervised method for learning domain-specific word representations that accurately capture the domainspecific aspects of word semantics. First, we selec...
متن کاملEffect of Data Imbalance on Unsupervised Domain Adaptation of Part-of-Speech Tagging and Pivot Selection Strategies
Domain adaptation is the task of transforming a model trained using data from a source domain to a different target domain. In Unsupervised Domain Adaptation (UDA), we do not assume any labelled training data from the target domain. In this paper, we consider the problem of UDA in the contact of Part-of-Speech (POS). Specifically, we study the effect of data imbalance on UDA of POS, and compare...
متن کاملUnsupervised Domain Adaptation with Feature Embeddings
Representation learning is the dominant technique for unsupervised domain adaptation, but existing approaches often require the specification of “pivot features” that generalize across domains, which are selected by task-specific heuristics. We show that a novel but simple feature embedding approach provides better performance, by exploiting the feature template structure common in NLP problems.
متن کاملImage alignment via kernelized feature learning
Machine learning is an application of artificial intelligence that is able to automatically learn and improve from experience without being explicitly programmed. The primary assumption for most of the machine learning algorithms is that the training set (source domain) and the test set (target domain) follow from the same probability distribution. However, in most of the real-world application...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017